metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mohamed El Kodadi,^a Malek Fouad,^a Abdelkrim Ramdani,^a Driss Eddike,^b* Monique Tillard^c and Claude Belin^c

^aLaboratory of Organo-Physical Chemistry, Department of Chemistry, Faculty of Sciences, University Mohammed The First, BP 524, 60 000 Oujda, Morocco, ^bLaboratory of Inorganic Solid State Chemistry, Department of Chemistry, Faculty of Sciences, University Mohammed The First, BP 524, 60 000 Oujda, Morocco, and ^cLaboratoire des Agrégats Moléculaires et Matériaux Inorganiques, UMR 5072 CC15, Université de Montpellier II, Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier Cédex 5, France

Correspondence e-mail: eddike@sciences.univ-oujda.ac.ma

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.038 wR factor = 0.109 Data-to-parameter ratio = 19.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Di-*µ*-chloro-bis{[*N*,*N*-bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydroxyethanamine]copper(II)} dichloride dihydrate

The title compound, $[Cu_2Cl_2(C_{14}H_{23}N_5O)_2]Cl_2\cdot 2H_2O$, crystallizes with the dinuclear molecule located on a centre of symmetry. The coordination geometry around the Cu atom is distorted octahedral, with three N atoms and one Cl atom in the equatorial plane, whereas the axial positions are occupied by the other Cl atom and the hydroxy group. There are two additional Cl⁻ anions and two water molecules in the asymmetric unit. Infinite hydrogen-bonded chains involving $O-H\cdots$ Cl interactions are formed.

Comment

Few copper complexes with the *N*,*N*-bis(3,5-dimethylpyrazol-1-ylmethyl)-1-hydroxy-2-aminoethane ligand (*L*) are known and only two papers related to these complexes have been published; they deal with the syntheses and X-ray structures of $[Cu(L)(Lo)(ClO_4)_2]$ (Boyd *et al.*, 1997) and $[Cu(L)(Lo)(NO_3)_2]$ (El Kodadi *et al.*, 2003), where Lo is 3,5-dimethylpyrazol. In the present work, we are concerned with the same ligand in a copper chloride complex (Fig. 1).

While the Cu atom is found in distorted square-pyramidal coordination in previous complexes (Boyd et al., 1997; El Kodadi *et al.*, 2003), in the present salt two $[C_{14}H_{23}ClCuN_5O]^+$ cations are related by an inversion centre and linked to each other through two asymmetrical Cu-Cl-Cu bridges. The Cu atoms thus display a distorted octahedral coordination. The equatorial plane of the pseudo-octahedron is formed by three N atoms, *viz*. N1, N3 and N5 [Cu-N1 = 2.1060 (15) Å, Cu-N3 = 2.0045 (17) Å and Cu - N5 = 2.0233 (17) Å], and one Cl atom [Cu-Cl1 = 2.2465 (5) Å]. The axial positions are occupied by the O atom of the hydroxy group [Cu-O1 2.3375 (18) Å] and by a Cl atom [Cu-Cl1 = 3.0233 (7) Å].The cationic dimer $[C_{28}H_{46}Cl_2Cu_2N_{10}O_2]^{2+}$ is linked to the chloride ions via $O-H\cdots Cl$ hydrogen bonds $[O1\cdots Cl2 =$ 3.0255 (18) Å]. Starting from this unit, infinite chains (Fig. 2) are then formed via O-H···Cl hydrogen bonds involving two water molecules $[O2 \cdot \cdot \cdot Cl2 = 3.192 (2) \text{ Å and } O2 \cdot \cdot \cdot Cl2^{ii} =$ 3.194 (3) Å; symmetry code: (ii) 2 - x, -y, 2 - z].

Received 27 February 2004 Accepted 8 March 2004 Online 20 March 2004

Twice the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level and both disorder components of the methyl groups are shown. Atoms labelled with a superscript 'a' are at the symmetry position 1 - x, 1 - y, 1 - z.

The strain imposed on the metal coordination environment by the tripodal ligand is also reflected in the chelate angles $[81.14 (6)-78.94 (6)^{\circ}]$, which are less than 90° and very similar to those found by Boyd et al. (1997) for the perchlorate (81.97-82.62°). The copper-pyrazole bond lengths are considerably shorter than the copper-amine bond distances (Boyd et al., 1997; Driessen et al., 1994). This difference is a result of the greater π -bonding ability of pyrazole ligands compared with alkylamines, which are exclusively σ donors. The Cu–Cl bond lengths are comparable to those reported for [Cu(ddae)-Cl₂]·C₂H₅OH {ddae is bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine} (Driessen et al., 1994) and the Cu-O distance is similar to that reported for the copper(II) complex with coordinated alcohols (Luneau et al., 1990; Antolini & Menabue, 1984; Antolini et al., 1986).

Experimental

The copper(II) complex was prepared by the addition of a solution of the tridentate ligand N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)-1hydroxy-2-aminoethane (0.277 g, 1 mmol) in methanol (3 ml) to a solution of copper(II) dichloride [CuCl₂·2H₂O] (0.170 g, 1 mmol) in methanol (3 ml). The resulting solution was filtered and allowed to stand at 298 K. Blue crystals formed after a few days and were filtered off and washed with small amounts of cold methanol and then dried in air.

Crystal data

$[Cu_2Cl_2(C_{14}H_{23}N_5O)_2]Cl_2 \cdot 2H_2O$	Z = 1
$M_r = 859.67$	$D_x = 1.518 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 8.5418 (6) \text{ Å}_{1}$	Cell parameters from 5565
$b = 11.1878 \ (8) \ \text{\AA}$	reflections
c = 11.6189(7) Å	$\theta = 3.0-30.3^{\circ}$
$\alpha = 66.625 \ (6)^{\circ}$	$\mu = 1.46 \text{ mm}^{-1}$
$\beta = 69.332 \ (6)^{\circ}$	T = 293 (2) K
$\gamma = 73.642 \ (6)^{\circ}$	Parallelepiped, blue
$V = 940.57 (11) \text{ Å}^3$	$0.32 \times 0.15 \times 0.13$ mm

Figure 2

A view of the hydrogen-bonded chains in the crystal structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with a superscript 'a' are at the symmetry position 1 - x, 1 - y, 1 - z.

Data collection

Oxford Diffraction Xcalibur CCD	$R_{\rm int} = 0.062$
diffractometer	$\theta_{\rm max} = 28.0^\circ$
ω scans	$h = -11 \rightarrow 11$
15 083 measured reflections	$k = -14 \rightarrow 14$
4526 independent reflections	$l = -15 \rightarrow 15$
3849 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0617P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.1229P]
$wR(F^2) = 0.109$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
4526 reflections	$\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ \AA}^{-3}$
231 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

Cu-N3	2.0045 (17)	Cu-Cl1	2.2465 (5)
Cu-N5	2.0233 (17)	Cu-O1	2.3375 (18)
Cu-N1	2.1060 (15)	Cu-Cl1 ⁱ	3.0233 (7)
N3-Cu-N5	161 77 (7)	N1 - Cu = O1	78 94 (6)
N3-Cu-N1	81.14 (6)	Cl1-Cu-O1	102.37 (5)
N5-Cu-N1	81.42 (6)	N3-Cu-Cl1 ⁱ	86.70 (5)
N3-Cu-Cl1	99.50 (5)	N5-Cu-Cl1 ⁱ	86.93 (5)
N5-Cu-Cl1	97.81 (5)	N1-Cu-Cl1 ⁱ	86.37 (4)
N1-Cu-Cl1	178.50 (4)	Cl1-Cu-Cl1 ⁱ	92.30 (2)
N3-Cu-O1	91.59 (7)	O1-Cu-Cl1 ⁱ	165.30 (4)
N5-Cu-O1	90.26 (7)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1-HO1\cdots Cl2\\ O2-HO21\cdots Cl2\\ O2-HO22\cdots Cl2^{ii} \end{array}$	0.74 (3)	2.30 (3)	3.0255 (18)	165 (3)
	0.92 (3)	2.29 (3)	3.192 (2)	170 (3)
	0.90 (3)	2.30 (3)	3.194 (3)	172 (3)

Symmetry code: (ii) 2 - x, -y, 2 - z.

Except for the hydroxy and water H atoms, which were located in a Fourier difference map and whose positions were refined freely $[O1-HO1 = 0.74 (3) \text{ Å}, \text{ and } O2-H = 0.92 (3) \text{ and } 0.90 (3) \text{ Å}], \text{ all others H atoms were placed in idealized positions (C-H = 0.93-0.97 Å) and constrained to ride on their parent atoms, with <math>U_{iso}(H) = 1.2U_{eq}(C) [1.5U_{eq}(C) \text{ for H atoms of methyl groups]}$. The isotropic displacement parameter was refined for the hydroxy H atom and fixed at 0.05 Å² for water H atoms.

Data collection: *CrysAlisCCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlisRED*, Oxford Diffraction, 2003); data reduction: *CrysAlisRED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997).

References

Antolini, L. & Menabue, L. (1984). Inorg. Chem. 23, 1418–1422.

- Antolini, L., Menabue, L., Sola, M., Battaglin, L. P. & Corradi, A. B. (1986). J. Chem. Soc. Dalton Trans. p. 1367.
- Boyd, P. D. W., Burrell, A. K. & Rickard, C. E. F. (1997). Acta Cryst. C53, 1549. Driessen, D. W., de Graaff, R. A. G., Parlevliet, F. J., Reedijk, J. & de Vos,
- R. M. (1994). Inorg. Chim. Acta, 216, 43–49.
 El Kodadi, M., Malek, F., Touzani, R., Ramdani, A., El Kadiri, S. & Eddike, D. (2003). Molecules, 8, 780–787.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Luneau, D., Oshio, H., Okawa, H., Kookawa, M. & Kida, S. (1990). Bull. Chem. Soc. Jpn, 63, 2212–2217.
- Oxford Diffraction (2003). *CrysAlisCCD* and *CrysAlisRED*. Versions 1.170.32 (Release 06.06.2003, *CrysAlis*170 VC++). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXL97. and SHELXS97. University of Göttingen, Germany.